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Using the Bayesian Improved Surname
Geocoding Method (BISG) to Create a
Working Classification of Race and
Ethnicity in a Diverse Managed Care
Population: A Validation Study

Dzifa Adjaye-Gbewonyo, Robert A. Bednarczyk, Robert L. Davis,
and Saad B. Omer

Objective. To validate classification of race/ethnicity based on the Bayesian
Improved Surname Geocoding method (BISG) and assess variations in validity by
gender and age.

Data Sources/Study Setting. Secondary data on members of Kaiser Permanente
Georgia, an integrated managed care organization, through 2010.

Study Design. For 191,494 members with self-reported race/ethnicity, probabilities
for belonging to each of six race/ethnicity categories predicted from the BISG algo-
rithm were used to assign individuals to a race/ethnicity category over a range of
cutoffs greater than a probability of 0.50. Overall as well as gender- and age-stratified
sensitivity, specificity, positive predictive value (PPV), and negative predictive value
(NPV) were calculated. Receiver operating characteristic (ROC) curves were gener-
ated and used to identify optimal cutoffs for race/ethnicity assignment.

Principal Findings. The overall cutoffs for assignment that optimized sensitivity and
specificity ranged from 0.50 to 0.57 for the four main racial/ethnic categories (White,
Black, Asian/Pacific Islander, Hispanic). Corresponding sensitivity, specificity, PPV,
and NPV ranged from 64.4 to 81.4 percent, 80.8 to 99.7 percent, 75.0 to 91.6 percent,
and 79.4 to 98.0 percent, respectively. Accuracy of assignment was better among males
and individuals of 65 years or older.

Conclusions. BISG may be useful for classifying race/ethnicity of health plan mem-
bers when needed for health care studies.

Key Words. Race/ethnicity, imputation and indirect estimation, geocoding,
surname analysis, health plans
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Racial and ethnic differences and disparities in health and health care are
issues of growing concern that need to be properly identified and classified to
be adequately studied and addressed. Yet health plans often do not readily
have race/ethnicity information at their disposal for a large proportion of their
members (High-Value Health Care Project 2010; Weissman and Hasnain-
Wynia 2011). This may be due to limitations, such as infrequent contact with
members, added costs of developing the systems to collect such information,
perceptions of regulatory prohibitions against collecting race/ethnicity, and
discomfort or fear among members in providing it (America’s Health Insur-
ance Plans and Robert Wood Johnson Foundation’s 2004; Institute of Medi-
cine 2009; Escarce et al. 2011; Weissman and Hasnain-Wynia 2011;
Gazmararian et al. 2012).

Although many health plans are beginning to collect race/ethnicity data
more systematically, it is likely to take a substantial amount of time before this
information is complete (Escarce et al. 2011). While self-report is considered
the gold standard (Institute of Medicine 2009; Gazmararian et al. 2012), sev-
eral techniques have been developed to indirectly estimate race/ethnicity
where it is unavailable, which would allow for monitoring and evaluation of
its role in health care and health research in the meantime (High-Value Health
Care Project 2010). This approach has been encouraged by the United States
(US) government’s Agency for Healthcare Research and Quality and the Insti-
tute of Medicine (Institute of Medicine 2009). One such recent method is the
Bayesian Improved Surname Geocoding method (BISG) developed by Rand
Corporation, which has been demonstrated to improve upon previous tech-
niques (Elliott et al. 2009). The algorithm, described in detail by Elliott et al.
(2008, 2009), utilizes a Bayesian approach to combine racial/ethnic data from
last names and geographic units.

While the use of indirect race/ethnicity estimations can enhance
research efforts, an assessment of the quality of these data in a variety of con-
texts is needed before implementation within each setting. Some validation
studies comparing the BISG algorithm estimates to self-reported race/ethnic-
ity have been performed by its developers (Elliott et al. 2008, 2009; Elliott
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2009; High-Value Health Care Project 2010) as well as by health plans begin-
ning to utilize it. However, these studies have included limited additional strat-
ification by pertinent personal characteristics; in particular, analysis of the
BISG algorithm’s performance by age is lacking. Moreover, while the
intended use of the BISG algorithm is to directly apply the predicted probabil-
ities and not to classify individuals into a single race/ethnicity, it is important
to understand how the algorithm performs for individual assignment of race/
ethnicity in instances where the use of probability values is not feasible. For
example, when attempting to identify individuals of a certain race/ethnicity
for participation in a targeted program or research study, it will be necessary
to decide an appropriate probability level that would warrant contacting indi-
viduals for recruitment. Yet analyses to determine optimal cutoffs on which to
base such determinations have not been reported. In this study, we therefore
assessed the validity of BISG algorithm estimations for the “off-label” use
of assigning race/ethnicity within a regional managed care organization
(MCO) population and examined how well the algorithm performed by
gender and age.

METHODS
Study Population

The study population consisted of members of Kaiser Permanente’s Georgia
region (KPGA)—one of eight regions of the Kaiser Permanente Medical Care
Program, a federally qualified, prepaid group health maintenance organiza-
tion. The study population was limited to those who had self-reported race/
ethnicity information available in Kaiser Permanente’s electronic medical
record (EMR) system databases and had a geocodable address allowing race/
ethnicity to be calculated using BISG. Self-reported race/ethnicity is primarily
collected during medical encounters and is available on roughly 80 percent of
the current KPGA membership. The time frame used for the study population
was through December 31, 2010.

Data were sourced from Kaiser Permanente’s Geographically Enriched
Member Sociodemographics datamart, which contains any available race/
ethnicity data reported for all medical record numbers in the EMR system in
both a raw and standardized form as well as imputed race/ethnicity informa-
tion calculated using BISG. The BISG algorithm results in individual-level
probability distributions indicating the likelihood of belonging to each of six
mutually exclusive race/ethnicity categories. Race/ethnicity data for each
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members’ census block group (based on Esri’s Updated Census Demograph-
ics dataset, 2010 [Esri 2012]) and members’ last names (based on the 2000
Census Bureau surname list [U.S. Census Bureau 2012]) were used for the
BISG assignment process.

Analysis

Members were assigned to one of the six races/ethnicities (White, Black,
Asian or Pacific Islander [API], Hispanic, American Indian or Alaska Native
[AIAN], Multi-racial) using specified cutoff levels for the individual-level
race/ethnicity probabilities imputed by the BISG algorithm. Meeting a given
cutoff criterion was defined as having a predicted probability for a race/ethnic-
ity greater than the cutoff value, while probabilities less than or equal to the
cutoff value failed to meet the criterion. The lowest cutoff was specified as 0.50
(or 50 percent) to eliminate any possibility of an individual meeting the cutoff
for more than one category, and this cutoff was varied in increments of 0.01
(1 percent) to a maximum cutoff of 1 (100 percent). Assigned race/ethnicity
was validated against reported race/ethnicity for the study population by cal-
culating sensitivity, specificity, positive predictive value (PPV), and negative
predictive value (NPV). The proportion of the study population meeting each
cutoff level, as well as the overall accuracy of race/ethnicity assignment—
defined as the percentage of individuals at each cutoff level assigned to the cor-
rect reported race/ethnicity, was also determined.

Sensitivity and specificity results were used to generate a receiver operat-
ing characteristic (ROC) curve for each race/ethnicity, and an optimum cutoff
level for the assignment of each race/ethnicity was determined by selecting
the cutoff point on the ROC curve with the minimum Euclidean distance from
the point of perfect prediction (100 percent sensitivity and specificity). The
formula for this calculation is derived from the Pythagorean theorem, where

\/ (1- sensitivity)2 +(1- speciﬁcity)2 is the Euclidean distance to the point
of perfect prediction from the point corresponding to the cutoff level in
question (Akobeng 2007; Gonen 2007).

The above processes were repeated with the population stratified by
gender to assess the impact of gender on the algorithm’s performance. To
examine variations in validity by age, each member’s age in years, as of
December 31, 2010, was calculated and was categorized as follows: 0 to less
than 18 years, 18 to less than 50 years, 50 to less than 65 years, and 65 years
and older. These broad categories were designed to focus primarily on
extreme age groups (children and the elderly), with the remaining adults
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divided into two categories. Children under 5 years were also analyzed sepa-
rately as a subset of the less than 18 age group. In the case of minors, race may
have been reported by the parent or guardian rather than through direct self-
report. All analyses were conducted in SAS 9.2 (The SAS Institute, Cary, NC,
USA).

RESULTS
Population-Level Characteristics and Algorithm Outcomes

The study population consisted of a total of 191,494 individuals. Blacks repre-
sented the largest proportion, followed closely by Whites. A greater propor-
tion was female, and adults 65 years and older represented the smallest age
group (Table 1).

In this population, individual predicted probabilities from the BISG
algorithm for each race/ethnicity had a mean of 0.475 for White, 0.393 for
Black, 0.065 for Hispanic, 0.050 for API, 0.002 for AIAN, and 0.014 for
Multi-racial. Individuals’ maximum predicted probabilities ranged from
0.245 to 1.000 with a median of 0.862.

Validity of Individual-Level Race/Ethnicity Predictions

Most of the study population (96.1 percent) met the starting cutoff of 0.50 for
the assignment of race/ethnicity, decreasing to 0 percent at a maximum cutoff
of 1. Therefore, the proportion of the total population that was accurately
assigned decreased from 76.4 to 0 percent over the cutoff range. However, the
proportion of the population meeting each cutoff whose race/ethnicity was
accurately assigned increased from 79.5 percent at 0.50 to 98.2 percent at
0.99.

Sensitivity at a cutoff of 0.50 for White, Black, Hispanic, API, AIAN,
and Multi-racial, respectively, was 85.2, 71.8, 71.0, 64.4, 0.0, and 0.3 percent,
with each decreasing to a value of 0 percent at a cutoff of 1. Specificity
increased from 76.8, 91.1, 99.0, 99.6, 100.0, and 100.0 percent, respectively, at
a cutoff of 0.50 to 100 percent at a cutoff of 1. The ROC curves (Figure 1) illus-
trate the changes in sensitivity and specificity and the relationship between the
two for each race/ethnicity.

From a cutoff of 0.50 to 0.99, PPV increased from 72.2 to 97.2 percent
for White; 87.2 to 98.8 percent for Black; 83.4 to 97.5 percent for Hispanic;
and 91.6 to 99.4 percent for API. PPV was 0 percent for AIAN through a
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Figure 1: Receiver Operating Characteristic Curves for the BISG
Algorithm by Race/Ethnicity

Sensitivity

0.00 0.02 0.04 006 008 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24

1-Specificity
&4 American Indian/Alaska Native  X5%¢ Asian/Pacific Islander
++—F Black @88 Hispanic
B8 Multi-racial 60 White

cutoff of 0.53 and was otherwise undefined. For Multi-racial, PPV fluctuated
between 0 and 13.8 percent through a cutoff of 0.73 and was thereafter unde-
fined. Over the range of cutoffs from 0.50 to 1, NPV decreased from 88.0 to
58.6 percent for White; 79.3 to 54.3 percent for Black; 98.0 to 93.5 percent for
Hispanic; and 97.9 to 94.4 percent for API. NPV decreased only slightly for
Multi-racial, remaining around 99.4 percent; and for AIAN NPV was con-
stant at 99.9 percent over all cutoff levels.

Optimal Cutoff Selection

Within the range of cutoffs examined, the prediction of race/ethnicity was
optimized to most closely approximate perfect prediction based on a combi-
nation of sensitivity and specificity at 0.57 for the assignment of White.
In other words, valid prediction of White race would be optimized using 0.57
as the criterion for assignment and assigning any individual whose predicted
probability from BISG for being White was greater than 0.57. Other opti-
mized values were any cutoff starting from 0.54 for the assignment of AIAN—
as all cutoffs from that value onwards were equivalent with specificity having
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reached 100 percent while sensitivity was consistently 0 percent—and the
minimum cutoff of 0.50 for the assignment of all other categories (Black,
Hispanic, API, and Multi-racial). Corresponding measures of sensitivity,
specificity, PPV, and NPV at these optimal cutoffs for each race/ethnicity are
presented in Table 2.

Stratification by Gender

The racial/ethnic distribution of the study population differed by gender and
consisted of more White males than females and more Black females than
males (Table 1). Other racial/ethnic groups were similarly distributed across
genders.

Males and females, 96.1 and 96.0 percent, respectively, had a predicted
probability meeting the minimum cutoff of 0.50, which decreased with
increasing cutoff. Thus, the proportion of the total male and female population
who was accurately assigned decreased from 77.4 and 75.6 percent, respec-
tively, to O percent over the range of cutoffs; but of those who met each cutoff
level, the proportion whose race/ethnicity was accurately assigned ranged
from 80.6 percent at 0.50 to 98.8 percent at 0.99 for males and from 78.7 to
97.8 percent for females (Figure 2).

The cutoff that optimized the prediction of each race/ethnicity for males
and females, respectively, was 0.57 and 0.56 for White; any cutoff starting
from 0.52 and from 0.54 for ATAN; and 0.50 for all other races/ethnicities.
Gender-stratified sensitivities, specificities, PPVs, and NPVs for each race/
ethnicity over the range of cutoffs and at the optimal cutoff are contained in
the Supplement (Table S1).

Table 2: Validity of Predictions by Race/Ethnicity at the Identified Optimal
Cutoffs

Race/Ethnicity Optimal Cutoff  Sensitivity (%)  Specificity (%) PPV (%) NPV (%)
White 0.57 814 80.8 74.9 86.0
Black 0.50 71.8 91.1 87.2 79.3
Hispanic 0.50 71.0 99.0 83.4 98.0
Asian/Pacific Islander 0.50 64.4 99.6 91.6 97.9
American Indian/ 0.54 or 0 100 und 99.9
Alaska Native higher
Multi-racial 0.50 0.3 100.0 13.8 99.4

NPV, negative predictive value; PPV, positive predictive value; und, undefined.
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Figure 2: Proportion of the Study Population with Accurate Predictions by
Sex as a Function of the Cutoff Used for Race/Ethnicity Assignment from
BISG Probabilities
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Stratification by Age

The proportion of non-Whites in the study population was greater in younger
age groups (Table 1). In particular, the proportion of Whites increased with
members’ age while the pattern was reversed in Blacks and APIs. Hispanics
and Multi-racial individuals had a similar decrease with age, although not fol-
lowing a consistent pattern, while AITANs were relatively stable.

Of people aged 0 to 18, 18 to 50, 50 to 65, and 65 or older, respectively,
96.0, 95.7, 96.6, and 96.9 percent had a predicted probability meeting the ini-
tial 0.50 cutoff. As the cutoff increased, these proportions decreased, and the
proportion of the total population accurately assigned by age group decreased
from 75.1, 74.9, 79.1, and 80.5 percent, respectively. However, the age-strati-
fied rates of accurate prediction of race/ethnicity among those meeting each
cutoff from 0.50 to 0.99 ranged from 78.2 to 97.9 percent in O to 18 year olds,
78.3 t0 98.0 percent in 18 to 50 year olds, 81.9 to 98.3 percent in 50 to 65 year
olds, and 83.1 to 99.4 percent in adults 65 years and older (Figure 3). Optimal
cutoffs by age for the assignment of race/ethnicity as well as age-stratified
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Figure 3: Proportion of the Study Population with Accurate Predictions by
Age Group as a Function of the Cutoff Used for Race/Ethnicity Assignment
from BISG Probabilities
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sensitivities, specificities, PPVs, and NPVs are presented in the Supplement
(Table S2).

For the subset of children under 5 years of age (5.6 percent of the study
population), 95.3 percent met the initial cutoff of 0.50, and the accuracy rate
for predictions over the cutoff range was from 77.5 to 96.9 percent. Optimal
cutoff values were similar to those found in the 0-18 year age group.

DISCUSSION

We found that the Bayesian Improved Surname Geocoding algorithm
performed well in this population for the assignment of individual race/ethnic-
ity based on predicted probabilities. This conclusion is based in particular on
the high overall accuracy rates for predictions among those meeting cutoffs
starting from 0.50, which were around 80 percent or higher. Moreover,
despite the fact that the number of individuals with high enough predicted
probabilities drops as the cutoff is raised, 89-96 percent of the initial
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population was still retained at the overall cutoffs levels determined to be opti-
mal for this population (0.50 to 0.57).

The algorithm was most sensitive for White, but extremely insensitive in
identifying AIAN or Multi-racial individuals, with sensitivities among all cate-
gories converging at higher cutoffs. As a result of their low sensitivity, the algo-
rithm had perfect specificity for AIAN and Multi-racial; however, specificity
was likewise high for API and Hispanic (99 percent or above) and was above
90 percent for Black.

Based on the placement of the ROC curves, algorithm performance
appears best for Hispanic and API—due to little change in specificity with
sensitivity and thus closer proximity to the top left point designating perfect
prediction (1, 0)—followed next by Black and White. Although these results
may differ slightly from findings on the BISG algorithm published by Elliott
et al. (Elliott et al. 2009), because of the differences in the insured populations
as well as different validation methods, they are nonetheless comparable to
their findings of higher correlation for Hispanic and Asian. The poor perfor-
mance for AIAN and Multi-racial is likewise consistent with their results and
indicative of the low utility of surname analysis and geocoded residence in
distinguishing these populations (Elliott et al. 2009).

The study population’s differing racial/ethnic distribution by gender
either suggests differential reporting of race/ethnicity by gender or differen-
tial enrollment in the health plan due to differences between men and
women of various races/ethnicities in employment patterns and insurance
coverage. Stratification by gender also revealed that algorithm performance
was generally slightly better in males. Gender-stratified ROC curves (not
presented here) were shifted higher in males compared to females in the
four major race/ethnicity categories, although they were unstable in AIAN
and Multi-racial. This difference is presumably a result of the common prac-
tice of women adopting their husbands’ last name at marriage, and given
that this study population was limited to one region of the United States,
these differences may also suggest that women in the Southeast are more
likely to change their last names than women in the nation as a whole.
A slight gender difference in validity is supported in the literature on BISG
(Elliott et al. 2009) as well as other applications of indirect estimation of
ethnicity involving surname analysis (Howard et al. 1983; Hazuda et al.
1986; Fiscella and Fremont 2006; Quan et al. 2006; Wei et al. 2006; Shah
et al. 2010; Wong, Palaniappan, and Lauderdale 2010; Lakha, Gorman, and
Mateos 2011). In terms of sensitivity, the largest gender gap was between
Hispanics followed by Asians, most likely a result of the greater contribution
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of surname analysis for these groups compared to others. While the algo-
rithm was consistently more specific in males, surprisingly, among Blacks
only, sensitivity and PPV were higher in women. Although Elliott et al. uti-
lize a different measure of performance, they also find greater gender differ-
ences in Hispanic and Asian and a reverse difference for Black (Elliott et al.
2009).

The trends in the population’s racial/ethnic distribution with age suggest
differences in enrollment between elderly and young Whites and non-Whites;
namely, elderly non-Whites appear less likely to be covered in this health
plan. It may also indicate some increasing diversity of the insured population
over time or differential utilization and reporting of race/ethnicity by age.

As a whole, the algorithm appeared to perform better in older age
groups, possibly suggesting that older individuals may live in less diverse com-
munities and carry last names that are more suggestive of their race/ethnicity.
Furthermore, this pattern may be stronger in the Southeastern U.S. population
used for this analysis than in the national population. Similar results demon-
strating improved performance with age among Asians and Hispanics using
name lists have also been found in some studies (Hazuda et al. 1986; Shah
et al. 2010; Wong, Palaniappan, and Lauderdale 2010). However, by race/eth-
nicity, the algorithm was less sensitive with age for Whites in this study,
perhaps reflecting decreased residential mobility of older Whites who thus
remain in increasingly integrated neighborhoods (Sandberg et al. 2009).
Conversely, sensitivity increased with age for Blacks, suggesting that older
individuals may remain in more segregated, predominantly Black neighbor-
hoods while younger individuals are more likely to move into more diverse
areas. A similar increasing pattern was seen for Multi-racial—despite very low
sensitivity—and somewhat for API, while patterns were inconsistent for
Hispanic and ATAN.

The importance of considering age has been illustrated previously with
a non-Bayesian algorithm combining surname analysis and geocoding that
found better performance when utilizing age-stratified race/ethnicity informa-
tion on geographic units rather than summary information; this recognizes the
dynamic nature of neighborhoods over time and age differentials in mobility
(Sandberg et al. 2009).

It is important to note that the validity results and cutoffs presented here
are not meant to be generalizable as this analysis was based on a regional and
not a national sample. However, the methodology utilized here can be
implemented in other regions to obtain results relevant to different locations.
Algorithm performance will be highly dependent on the underlying source
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population and the relative prevalence of different racial/ethnic groups as well
as the level of racial/ethnic residential heterogeneity within the population
due to its partial basis on geocoding. Thus, the algorithm may be insensitive to
less prevalent races/ethnicities in populations with a predominant racial/eth-
nic group while increased residential segregation would allow for individual
probability predictions high enough to satisfy a given cutoff (Fiscella and Fre-
mont 2006). Given the greater racial/ethnic differences between regions of the
United States, one would therefore expect better performance in a national
sample than the regional sample presented in this analysis. Furthermore, the
extremely low prevalence of AIAN and Multi-racial in this population may
partially account for the poor sensitivity observed. The Supplement provides
a quantitative example demonstrating how differences in the source popula-
tion structure affect performance.

Moreover, there are alternative approaches and methods for the selec-
tion of an appropriate cutoff level for classification; therefore, how one is
selected and how a race variable is defined will depend on the research ques-
tion and the relative importance of false negatives and false positives.

The predicted probabilities from BISG can be used directly in regres-
sion and other analyses without the need for individual classification (Elliott
et al. 2008, 2009). Utilizing the probabilities to categorize individuals can
lead to a loss of information by effectively equating individuals who may
have very different probabilities and can also result in reduced accuracy
and efficiency (Elliott et al. 2008, 2009). However, the ability to make indi-
vidual categorizations of race/ethnicity can be especially helpful for target-
ing communication campaigns and for improving recruitment of specific
races/ethnicities for studies and other programs. Thus, an assessment of
how best to make such classifications is important for this purpose.

Ultimately, the goal for health plans is to increase efforts at collecting
and obtaining reported race. However, in the interim, the use of indirect meth-
ods such as BISG may be beneficial in health care and health research. With
overall accuracy rates near or above 80 percent and moderate to high sensitiv-
ity (64-81 percent) as well as high specificity and predictive values (75-100
percent) at optimal cutoff levels, the reasonably high validity of the algorithm
for major racial/ethnic groups within this population—even when a simple
majority was the basis for individual prediction—is indicative of the fact that
the algorithm may indeed be reliable for individual-level assignment within
populations of a similar racial/ethnic structure.

In conclusion, the results of this study demonstrate suitable performance
of BISG overall for the classification of race/ethnicity within a diverse MCO
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population as well as greater variation in performance by age than by gender,
as seen in the differences in optimal cutoffs selected. This suggests that when
applying the algorithm, it may be crucial to take the age of the population into
account.
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SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this
article:

Table S1. Validity of Gender-Stratified Predictions by Race/Ethnicity at
the Optimal Cutoff and over the Cutoff Range.*

Table S2. Validity of Age-Stratified Predictions by Race/Ethnicity at the
Optimal Cutoff and over the Cutoff Range.*

Appendix SA1: Author Matrix.



